Machine Learning Lab Course

Organizational Meeting

lecturer: Prof. Dr. Stephan Günnemann
Team

- Prof. Dr. Stephan Günnemann
- Marin Bilos
- Daniel Zügner

This is a practical course (Praktikum) for **Master** students!

Name of module: Large-Scale Machine Learning (IN2106, IN4192)

website: ml-lab.in.tum.de
Machine learning is a steadily growing field

More ML papers are published

Source: aiindex.org
Industry is closely following academic growth

More startups are based on AI

Source: aiindex.org
Knowing ML is becoming an important skill set

More jobs require AI skills

Source: indeed.com
Why attend our Machine Learning lab course?

1. Get the chance to implement and apply state-of-the-art ML algorithms
2. Gain hands-on experience working on real-world data, solving real-world tasks by working on projects offered by our industry partners.
 – Successful projects might even qualify for a subsequent master thesis.
3. Work on large-scale problems with the support of state-of-the-art GPU computing resources.
Requirements

- Requirements for the lab course
 - **strong programming skills** (Java, Python, C++, Java, etc.)
 - strong knowledge in data mining/machine learning
 - you should have passed relevant courses (the more, the better)
 - Mining Massive Datasets
 - Machine Learning
 - Our seminars
 - self-motivation

- Additional selection criteria
 - other **relevant** experience (projects in companies, experience as a HiWi)
 - you can send an overview of your experience to us *(see end of slides)*
Organization

- Groups of 3 to 4 students
- Each team will work on a different project
- Groups are allowed to (should) collaborate!
 - exchange your experience with the other groups
 - how do the other groups tackle certain problems?
- Students get access to our GPU compute servers
 - Each of the servers has:
 - 4x NVIDIA GPU with 11GB RAM
 - 10-core CPU
 - 256 GB RAM
 - scale up your models and data!
Organization

- Weekly meetings (around 120 minutes)
 - each group should briefly report their progress, open problems, and next steps

- Regular documentation of your work
 - status reports and documentation (we have set up a wiki)
 - use of a central code repository
This semester's industry partners

SIEMENS metris.io BMW
Industry project: Metris

- In natural language processing the problem of ambiguity makes many tasks hard for algorithms to solve, while humans excel at them
 - E.g. finding what something refers to: Bayern as a state or as a football team
 - Or finding connections between different terms having the same meaning: Angela Merkel or The Chancellor
 - However, humans do not have capacity to process big amounts of data

- Task: Mining large text data to find entities and perform context disambiguation
 - Working on large text corpus of a Munich-based startup
Industry project: BMW

- Big multinational companies have workers using different languages, but it would be useful if all could have access to a shared knowledge base.
- Problem: Searching this knowledge base (hard even with one language)
 - Both the query and the result are written in natural language
 - Problem of finding relevant information from a written description
 - Problem of representing the current knowledge so that it is easy to search
 - Harder with multiple different languages
- Task: Information extraction and data representation in multilingual setting
 - Working with big data provided by BMW
Industry project

- Topic 1: Mining (massive) public transit data
- Topic 2: Representative present today: Mohamed Khalil
Academic project: Graph neural network robustness

Graph neural networks are successfully used to solve many tasks. Despite their success, there is still much to learn about their robustness w.r.t. corruptions in the data.

- The goal of this project is to deepen our understanding of graph neural networks.
- Therefore, you will build a test suite and compare different graph neural network architectures and their robustness w.r.t. noise and adversarial attacks.
- If successful, this is a great starting point for a publication and/or a master thesis.
The growing complexity of communication networks makes their analysis and maintenance increasingly challenging. Computer networks suffer from badly secured Internet of Things devices, hacker attacks or outdated software.

- Interdisciplinary project with the Chair of Communication Networks
- The goal is developing machine learning models for anomaly detection in dynamic communication networks
 - Using node embedding methods, probabilistic graphical models or community detection algorithms
More projects

- We’re **doubling the course size** next semester (12 -> 24 spots).
- We are still in discussions with **industry partners**, so we may add more industry projects before the semester starts.
- There will also be additional academic projects about the state of the art in **graph neural networks** and/or **robust temporal learning**.
Registration via the matching system!

Module name: Large-Scale Machine Learning (IN2106, IN4192)

+ fill out the application form (see next slide)
Your Experience

- Fill out our brief online form about your experience by July 24
 - provide us with a list of your experience in data mining/machine learning (courses, projects, etc.)
 - please send us a short overview (bullet list, not a complete CV)

- We will post a link to the form by tomorrow (July 16) at ml-lab.in.tum.de.
Also visit:

Poster session with this semester's Lab course students. Entrance of Interims, July 22 at 3:45pm

Join and ask questions!